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Abstract

Sediment deposition in the upstream portion of Lower Granite
Reservoir, Idaho-Washington, is threatening flood control and navigational
uses of that system. Although numerous alternatives are being examined,
sediment dredging is being considered as a management technique to
alleviate Sédimenf déposition. The inception of dredging in 1986 provided
the opportunity to monitor effects of sediment dredging and overflow from
Tand disposal ponds on selected water quality characteristics and fish and
benthic community abundance. We also reviewed literature on effects of
turbidity on aquatic systems.

Ten study stations were established; five associated with dredging and
five with disposal. Stations ranged in Jocation from being upstream of
dredging and disposal to about 9.7 km downstream. Al7l ten stations were
sampled for benthos, whereas the two stations about 274 m downstream from
the dredging and disposal stations were not sampled for fishes. For water
quality sampling, we collected samples 100 m upstream, 90 and 425 m
downstream from the immediate impact site.

Changes in selected water quality characteristics as a result of
sediment dredging and disposal were minimal. Changes in temperature,
dissolved oxygen and pH were slight 90 m downstream from the activity and
undetectable at 425 m. Increases in turbidity and suspended solids were
negligible downstream from the dredge. With the exception of a single peak
of suspended solids (205 mg/1) and turbidity (82 NTU} in mid-February,
overflow from land disposal had little effect on water quality 425 m

downstream. Decreased depth of secchi disk readings reflected decreases in

ambient water transparency with the onset of spring runoff.




ii

The benthic community sampled by Ponar dredge at each of four sites at
ten sampling stations exhibited low abundance of various taxons and was
dominated by Oligochaetes and Dipterans (98.1 - 99.7%). Amphipods and
molluscs were néxt highest in abundance although numbers were low compared
to oligochaetes and dipterans. Variation in benthic abundance was high
within a transect and among transects. Effects of dredging on benthos were
measured at the dredge site and downstream at least 1.6 km. We did not
observe any adverse effect of overflow from land disposal on the benthic
community., Recovery of impacted benthic communities occurred by 6 months
following dredging. Wide differences in benthic abundance were attributed
to clumped distribution of organisms and differences in substrate
characteristics. -

The fish community at dredge and disposal stations was dominated by g
salmonid, cyprinid and catostomid fishes. Twenty species were collected .
from stations associated with dredgiﬁg and 15 species from the disposal
stations. A total of 2378 fish were collected. Relative abundance of
fishes varied throughout the sampling period (January - April, 1986), but
did not appear to be related to dredging and disposal activities. Numerous
chinook salmon were collected, while dredging was uﬁéev£é§én. Fish I
activity at all stations was Tow at the inception of dredging but increased
substantially during and following the completion of dredging. Gamefish
abundance at haif the stations was highest after dredging activities were
curtailed but highest at the other stations before and during dredging.

However, fewer fishes were collected before and during dredging and
disposal -activities. Catch rates of residént fishes were varijable and,

those for juvenile salmonid fishes increased following completion of

dredging and disposal activities. Catch rates of salmonid fishes were not
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affected by dredging and disposal although elevated catch rates of nongame
fishes suggest possible attraction. Fish biomass sampled was high at the
dredging site and at the overflow throughout the dredging and disposal
activities. Data on fishes do not suggest adverse affects to the fish
community.

Food items varied widely in proportional abundance which probably
reflects their availability as prey. Chinook salmon and rainbow trout fed
predominantly on plecopterans, ephemeropterans, dipterans and
trichopterans. Incidence of predation by northern squawfish was high as
salmonids accounted for 80% of the wet weight of food items.

Our results suggest that sediment dredging and overflow from land
disposal activities had minimal affect on water quality and benthic and
fish communities in Lower Granite Reservoir. Increases in turbidity and

suspended solids were localized and within the range that has occurred

during runoff in the Snake River system.
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INTRODUCTION

Concern over the flood control capabilities of the Lower Granite
project has stimulated much interest among resource managers. High
deposition rates of sedimentation from upstream sources have threatened
flood control and navigational uses of Lower Granite Reservoir.

Predictions made by personnel of the U.S. Army Corps of Engineers, Walla
Walla, Washington, suggest that within less than two decades the height of
the Lewiston Levees may be inadequate to pass a standard project flood. A
number of alternatives have been proposed although each alternative has the
potential to reduce project benefits. One alternative to lessen continuous
deposition of material in the upper end of Lower Granite Reservoir is to
annually dredge and dispose about 800,000 cubic yards of sediment. This
a]terna;ive is presently being considered as a management technique to
a]]eviélé,géa%ﬁént deposition. Fisheries resource managers, however, have
expressed numerous concerns over the environﬁenta] aspects of this
alternative.

In Tate winter of 1986, the first dredging was conducted with the
objective of removing about 800,000 cubic yards of material from the area
surrounding the Port of Clarkston. ODredging commenced about 15 January and
continued until 15 March, 1986. Dredging was conducted mostly by a hopper
dredge although a smaller cutterhead dredge was used in shallow waters.
Upland disposal was employed using holding ponds with a single stand pipe
outlet returning water to Lower Granite. If these removal methods were to
be conducted regularly, managers wanted to assess the possible impacts of

the dredging and land disposal and overflow methods on the aquatic

environment. The presence and operations of the dredge provided an ideal




opportunity to evaluate effects of dredging on Lower Granite Reservoir. As
a result, this study was initiated to monitor various aspects of the
dredging and overflow from land disposal operations on selected water

quality characteristics and benthic and fish communities.

OBJECTIVES

1) To coliect, analyze and interpret water quality conditions at

dredge and disposal sites,

2) To assess the effects of dredging and the resultant turbidity

plume on benthos in Lower Granite Reservoir.

3) To assess the effects of dredging and the resultant turbidity

plume on fishes in Lower Granite Reservoir.

4) To develop a comprehensive literature review on the effects of

turbidity from dredging and disposal on aquatic biota.




STUDY AREA

The study area extended from above the confluence of the Snake and
Clearwater rivers (about Mile 139.2) to approximately 29.3 km (12 miles)
downstream from the confluence (Fig. 1). Ten stations were established for
benthic sampling (C1 - C5 and W1 - W5) and eight for fish sampling (Cl, C2,
€4, C5 and W1, W2, W4, and W5). Station selection was based on sampling
benthos above the dredging (C5) and disposal (W5) sites; we used these
sites as examples of areas receiving no impacts from dredging and disposal.
Station C4 was located in the dredging zone, whereas W4 was located at the
overflow from the disposal ponds. Thus, stations C4 and W4 were located
in the highest impact zone. To assess potential immediate downstream
effects of dredging and disposal, we established stations C3 and W3
approximately 274 m (300 yards) downstream from the dredging site (C4) and
the overflow (W4). The actual location of the station was measured
downstream in a linear distance from tﬁe downstream limit of dredging
activities for C3 and measured from the effluent for W3. Four additional
stations were established to assess possible effects further downstream
from the dredging and disposal sites. Two were approximately 1.6 km (1
miles) below the downstream 1imit of the dredging (C2) and effluent (W2),
whereas the remaining two were about 8-9.7 km (5-6 miles) downstream (Cl
and W1, respectively). The actual location of these stations was
determined on maps and then transferred to field locations. Shareline
markers were used (painted stakes, boulders, etc.) to insure sampling at

precise station locations.



Objective 1:

To collect, analyze and interpret water quality conditions at

dredge and disposal sites.

METHODS

We measured water temperature, dissolved oxygen, water t;ansparency,
and total suspended solids at dredge and disposal sites. Water temperature
(C) and dissolved oxygen {mg/1} concentrations were measured immediately
below the surface, mid-water and at the bottom with a Yellow Springs Model
57 dissolved oxygen meter. Water transparency was measured to the nearest
0.1 m using a standard 20 cm secchi disk. Water samples for turbidity and
total suspended solids were collected in 1 liter plastic bottles and
transported to the University of Idaho water quality laboratory. Turbidity
analysis was measured to the nearest Q.IO nephelometric turbidity unit
(NTU) using a Hach turbidimeter. Total suspended salids {mg/1) were Y
measured by filtration using a weighed standarq_glass-fjbet:f?f;er dried to/cii;
a constant weight at 103-105 C (APHA 1985). The increase in weight of the éit-w"

filter represented the total suspended solids.

RESULTS
Temperature
Water temperatures among dredging and disposal stations generally were
similar (Appendix Table A-1). Temperatures from mid-January through mid-

February changed 1ittle but nearly doubled from the third to fourth week in

February. Although water temperatures generally were similar between




dredging and disposal stations within a day, s1ight temperature differences
(2C) 1in March were observed at the disposal stations. However, dredging

and disposal had no significant affect on water temperatures.

Dissolved Oxygen
Dissolved oxygen concentrations ranged from 10.6 to 13.4 mg/1 at the
bottom to 10.8 to 13.9 mg/1 at the surface (Fig. 2; Appendix Table A-2).
Range of dissolved oxygen at mid-level was similar to surface
concentrations. No differences in dissolved oxygen levels were found among
dredging and disposal stations 100 m upstream compared with that of 90 m

and 425 m downstream.

pH
Like dissolved oxygen, pH was relatively homogeneous throughout the
monitoring (Fig. 3). pH at the bottom ranged from 7.67 to 8.34, while at
the surface ranged from 7.6 to 8.33. Mid-level pH was similar (Appendix

Table A-3). No consistent changes in pH were observed by depth or station.

Turbidity
Turbidity varied little with depth and time (Fig. 4). Highest
turbidity was 82 NIqldgqjﬁjaownstream from the discharge as compared to 20
NTU 100 m upstream from the effluent. This significant increase in
turbidity was the only peak observed throughout the monitoring. Few other
differences were as different between upstream and downstream readings
(Appendix Table A-4). For example, at dredge monitoring stations,

turbidity was often lower 90 m downstream from that 100 m upstream from the

dredge. . The effluent from the disposal ponds was variable in the increase..
' - T - . - e e
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in turbidity ranging from.3-5 NTU’gﬂEg_§Q;§Q_NIULs. Turbidity from the

R

effluent after mid-February increased substantially from that observed from
mid-January to mid-February. In general, turbidity was slightly higher 425
m downstream from that 100 m upstream.

Turbidity measured at fish sampling stations showed a gradual decrease
in turbidity after early February (Fig. §5). Highest turbidity levels (<10
NTU) were measured at dredge stations Cl1 and C2; unfortunately, no samples
were collected at a similar time at either C5 or C4. Turbidities were
generally higher further downstream of the dredging (C2, C1) and disposal
activities (W2, W1) than at the locations of maximum disturbance (C4, W4).
Dredging and disposal increased turbidities about 2-4 NTU’s above
background levels (Fig. 5).

Suspended Solids

Suspended solids were considerably higher in the reservoir as a result
of disposal than from dredging (Fig. 6). Highest levels of suspended
solids were measured at mid-level and bottom from dredging and disposal
activities. Suspended solids 90 m downstream from the dredge were elevated
about 50 mg/1 higher than 100 m upstream from the dredge. Highest solid
Tevels were 205 @9{} 90 m below the effluent from the disposal ponds. This
peak in susp;;EEd solids coincided with the peak in turbidity. On that
date, suspended solids were about three times higher than ambient 425 m
downstream but‘1g§§mgngg_1qm;;Zldjﬁppendix Table A-5). Suspended solids
were linearly (r2 = 0.803; n = 96) related to turbidity: ss = -5.302 +
2.189 turb where ss = suspended solids concentrations (mg/1) and turb =

turbidity (NTU).



Secchi Disk
Secchi disk readings were highest 100 m upstream of dredging and
disposal activities, lowest 90 m downstream and near ambient 425 m
downstream (Fig. 7). Secchi levels were higher at dredge stations than
those at disposal stations. Secchi readings generally decreased from

highest in January to lowest in March as a result of increased ambient

turbidities {Appendix Table A-1).




Objective 2:

S

To assess the effects of dredging and the resultant turbidity i

plume on benthics in Lower Granite Reservoir.

Four replicate benthic samples (total of five samples) were collected
at each of four sites along a station transect using a Ponar dredge (239.25
2y '

cm We sampled each of the ten stations during (February}, 1 month

(April), 3 months (June) and 6 months (September) following the completion
of dredging and discharge from the disposal pond. For sampling site
Tocation, we divided the reservoir width into four equidistant sampling
sites along each of the ten transects. Some sites were Tocated within the
original river channel. Because of the nature of the substrate in the
river channel, we were unable to collect the five samples per site. If we
coutd not collect a sample in five dredge attempts, we moved slightly and g
tried another five samples. If the second five samplies were not ?
successful, we went to the next sampling site. Therefore, a maximum of ten
samples were attempted at any one site. Samples were strained through a
U.S. Standard No. 30 sieve (0.595 mm openings), preserved in FAA and later
identified to the Towest possible taxon.

Mean density of benthic organisms per site was calculated using four
replicates. We took four replicates (total of five samples) at each site
to allow for a two-fold statistical analysis. We used a factorial
arrangement of a randomized complete block design.

1} to compare densities and species diversity channel-wide or
comparisons within a station, and

2} to compare densities and species diversity reservoir-wide or

comparisons among stations,




Estimates of abundance were expanded for an area of 1 me.
Results

Numerous taxa were collected in dredge and disposal stations in Lower
Granite Reservoir (Tables 1-10). Dipterans and Oligochaetes were the most
abundant organisms (98.1 - 99.7%) collected. Amphipods and molluscs were
next highest in abundance.

Oligochaetes and dipterans accounted for a majority of the benthos
during (February) and following (April, June and September) dredging and
disposal operations. We found wide variation in abundance across each of
the transects (Figs. 8-11). Oligochaetes were most abundant at all
stations in February, of lesser abundance in April and June and increased
in September. Oligochaete abundance at the dredge site, C4, was
consistently Tow but demonstrated an increase in September. The effect of
dredging was observed at station C4 in February {sampling was conducted
late January and early February) and dredge stations C3 and C2 in April and
June {Fig. 8). Oligochaetes were consistently more abundant at disposal
stations than dredge stations. W4, the station immediately downstream of
the effluent from the disposal pond, manifested Oligochaete abundance
comparable to that of other stations within any of the sampling times.
Dipteran abundance varied between dredge and disposal stations. For
example, abundance was generally highest in September at dredge stations
while highest abundance at disposal stations was measured in April. The
change in abundance was the result of dredging activities. With the
exception of dredge station Cl, dipterans were low in abundance in April

and June but increased at all stations in September. Dredging decreased
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abundance at sites A, B and C at stations €2, C3 and C4 (Fig. 10), whereas
numbers were consistently low at site D in the original river channel.
Recovery of dipterans appeared nearly complete by September, approximately
6 months foilowing completion of dredging. A]thougﬁ dipteran density was
Tower at disposal stations, we did not observe any effect of disposal on
dipteran abundance. High abundance at sites A and B at W4, immediately
downstream from the effluent, in April support our interpretation. Benthic
abundance at station C5, upstream from the dredging activities was
generally low because of substrate characteristics and sampling
difficulties. Substrate consisted of material larger than the Ponar dredge

could effectively sample which accounts for the apparent low abundance of

benthos (Figs. 8 and 10; Table 5).
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Objective 3:
To assess the effects of dredging and the resultant turbidity

plume on fishes in Lower Granite Reservoir.

METHODS

Fish were sampled at each of eight stations with horizontal gill nets
and beach seine. Sampling was conducted prior to, during and one month
following dredging and disposal activities. A total of three standardized
seine hauls were taken along the shoreline at each of eight stations. As a
result, 96 seine hauls were taken in this study. Beach seining was
conducted using a 30.5 x 2.4 m seine constructed of 6.35 mm knotless nylon
mesh with a 2.4 x 2.4 x 2.4 m bag. A standard seine haul was made by
setting the seine parallel to the shoreline using 15 m extension ropes tied
to the brails. Following positioning, the seine was rapidly drawn-in and
fish removed.

Four horizontal gill nets were set perpendicular to the shoreline.
Horizontal gill nets were either multifilament or monofilament material, 61
m long x 1.8 m deep, having 8 panels each 7.6 m long, at 1.25 cm, 2.54 cm,
3.81 cm, 5.08 cm, 6.35 cm, 7.62 cm, 8.89 cm, and 10.16 cm bar measurement.
Two of the nets were floating sets and two were contour sets. Floating
sets were checked approximately at hourly intervals over about a 7-8 hour
period, while contour sets were checked every 2 hours. We used short term

effort to preclude net mortality of anadromous fishes. Because of the

added effectiveness, only night sets were made in this study.
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Fish cotlected by seining and i1l netting were identified to species
and total lengths (mm) were taken (except anadromous adults). A1l adult
anadromous salmonids were released immediately and never removed from the
water. Total weights were calculated from weight - length relationships
determined for fishes in Lower Granite Reservoir from an earlier study
(Bennett and Shrier 1986). Al1 anadromous salmonid smolts, smallmouth bass
(> 200 mm), largemouth bass, crappies and yellow perch were anesthetized
with tricaine methylsulfonate (MS-222) and their stomach contents sampled
by lavage technique (Bennett and Shrier 1986). Contents of northern
squawfish stomachs were determined by dissection as the lavage method was
not effective in providing a representative dietary sample. Our lavage
sampling technique consisted of a boat biige pump (750 gph) connected to a
pistol type garden hose shut-off that was attached to a modified flexible
copper tube (1/4"). The tube was inserted into the stomach of the fish,
via the esophagus, and stomach contents flushed into a bucket. Contents
were strained through plankton netting (80 micron) and preserved in
formalin-aceto-alcohol (FAA) (Pennak 1978).

Stomach contents of fish were identified with dissecting and compound
microscopes. Aquatic organisms were identified to the lowest possible
taxon, whereas terrestrial organisms were identified to order. Weights and
numbers of unidentifiable insect parts were categorized under miscellaneous
insects and arbitrarily assigned a numeric value. Digestion of various
body parts often precluded species identification and, as a result,
ingested food items were placed in the appropriate miscellaneous category
(fish, insects, etc.).

Wet weights were measured on individual food items. Wet weights were

measured by blotting each organism on a paper towel before weighing.
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Weights for unidentifiable insect parts (miscellaneous insect category)
were determined by averaging all insect weights per organism and dividing
by eight (average number of insect body parts). Small organisms were
counted and weighed as a taxonomic group. An average weight for an
individual organism in each taxon was then computed. Mean weights were
used to compute total weights of smaller organisms.

We compared fish numbers at each station. We also computed a species
diversity index for each site using Brillouin’s index (Brillouin 1962) and

avenness.

RESULTS
Overall Fish Abundance

We collected individuals of 20 species from dredging stations and 15
species from disposal stations representing 1154 and 1224 fishes,
respectively (Tables 11 and 12). Chinook salmon, redside shiners,
chiselmouth and largescale suckers were the more abundant fishes at
dredging stations (Fig. 12). In addition to these fishes, northern
squawfish also were abundant at disposal stations {Fig. 13). Less abundant
but about equally represented at dredging stations was the rainbow
{steelhead) trout. Number of fishes collected at each station varied
considerably among stations. The highest number of fish was collected at
station Cl1, whereas the highest number of fish collected at a disposal
station was at W4 (Tables 11 and 12). The lowest number of fishes were
collected at dredging station C5, the station upstream from dredging
activities. In comparison at the overflow stations, the second highest

number of fishes was collected upstream from the overflow (W5), whereas the

lowest number was collected at W2.
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In general, sizes of fish collected at the various stations varied
considerably (Figs. 14 and 15). The stations with the wider range in
lengths were W4 and W5 at the disposal stations. Length distributions at
the dredging stations generally were similar witﬁ a wide range of lengths
represented.

Species diversity indexes were highest at station CI, while diversity
at the remaining stations was similar (Fig. 16). Lowest diversity in
fishes was found at overflow station W2. Evenness varied little among
stations but was higher at overflow stations W5 and W2 (Fig. 17). Evenness
was lowest at the dredge site and similar at other stations.

The proportion of salmonid fishes was higher at stations CI, C4, and
W5 (Fig. 18). Lowest number of salmonids were collected at station W4. Of
the salmonid fishes collected, chinook salmon was the most common]y
represented species. Nearly 30% (n = 539) of all fishes collected (n =
2308) were chinook salmon.

The biomass of fish flesh sampled varied considerably among stations
(Fig. 19). Higher biomasses were collected at stations C4 and W5.

Gamefish biomass was low at all stations. The highest biomass of gamefish

sampled was at station Cl.

Dredging and Disposal Effects
Relative abundance of fishes varied among times but did not appear to
be affected by dredging activities (Fig. 20). Two to three species
generally were highly abundant at each of the stations before dredging
activities. Species in abundance varied among stations and few trends were
observed. For example, at station Cl, bridgelip sucker was the most

abundant, while at C2, rainbow trout was the most abundant. HNorthern
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squawfish was probably the most commonly collected species before dredging
activities at stations C1-C5. During dredging at these stations,
largescale sucker predominated at €1 and C4, while chinook salmon and
mountain whitefish were abundant at 5. After drédging, chinook salmon and
chiselmouth were more abundant.

Relative abundance at disposal stations alse varied with time of year
but did not appear related to disposal activities (Fig. 21). Before
discharge, samples were only collected at stations W& and W5; results
showed an abundance of Targescale suckers (W4 and ¥5) and peamouth (only
W5}. Collections during disposal, demonstrated differences in species
among stations with Targescale suckers, chiselmouths and redside shiners
being more abundant. After dredging, chinook salmon were abundant with
chiselmouth, largescale suckers and redside shiners. In general, salmonid
fishes were more abundant following completion of dredging and disposal
activities (Figs. 20 and 21).

Another measure of fish abundance at the various stations before,
during and after dredging and disposal was the biomass of fish flesh
sampled. Biomass sampled at dredging and disposal stations was
consistently low among the four stations before dredging activities (Figs.
22 and 23). Only at station W4 was a significant amount of fish flesh
sampled before dredging and disposal activities commenced. In general,
biomass sampled increased during dredging and disposal which probably
reflects an increase in fish activity not associated with dredging and
disposal but associated with the advent of increased photoperiods and
temperatures. Stations C5 and W2 consistently manifested low levels of

fish biomass before and during dredging and disposal activities. After

dredging and dispesal activities were curtailed, more fish biomass was
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sampled at all stations than during previous periods. Biomass sampled at
W2 and C2 was consistently low during all sampling periods which probably
reflects habitat quality and/or sampling ineffectiveness.

Catch efficiencies of fishes were variable throughout the study
(Appendix Tables B-1 - B-9). Catch rates of Juvenile anadromous salmonid
fishes increased significantly following completion of dredging and

disposal activities.

efi un
Gamefish abundance was generally highest after dredging activities
were curtailed and lowest before these activities (Fig. 24). Stations €2,
C5, W1 and W4 were exceptions as the proportion of gamefish was higher at
C2 and W4 before dredging and disposal and C5 and W1 during dredging
activities. However, fewer fishes were collected before and during

dredging and disposal activities as often less than 25 fish were collected.
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Food Habits

Salmonid Fishes

Food habits of chinook salmon and raihbow trout demonstrated wide
variation in diet among sampling areas and times. Because small numbers of
these fishes were collected, we pooled all of the samples into pre and post
dredging and disposal sites (Figs. 25 and 26). Chinook salmon fed
predominantly on plecopterans, ephemeropterans, dipterans and trichopterans
although the proportion of these items varied between during dredging and
disposal and post dredging and disposal times and locations. These same
food items were abundant in rainbow trout stomachs and similar variations
were found as in chinook salmon. Also, two rainbow trout contained

miscellaneous fishes in their diet.

Salmonid Predation

The incidence of predation was high in northern squawfish following
disposal. Salmonids accounted for more than 80% of the wet weight of food
items and miscellaneous fishes accounted for an additional 10% of the
weight (Fig. 27). Only two squawfish were captured during dredging that
contained food items. One contained terrestrial insects, whereas the other
contained miscellaneous fish flesh.

One smallmouth bass was captured following dredging and disposal.
Crayfish predominated (93.8%) followed by miscellaneous insects (6.15%).

No smolts were found in the bass stomach.
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Objective 4:

To develop a comprehensive literature review on the effects of

turbidity from dredging and disposal on aquatic biota.

LITERATURE REVIEW

We examined published and unpublished literature on the effects of
turbidity on biota. Special emphasis was placed on the effects of
turbidity on fishes. Because of the limited information on turbidity
generated from dredging and disposal on aquatic organisms, we reviewed all
germane literature,

Turbidity is a commonly estimated water quality parameter in aquatic
environmental assessments. A number of different measures have been used
in the field and laboratory, some are related, others are not. For
example, field biologists commonly measure transparency, using a secchi
disk, as an index of turbidity or an approximation. The standard measure
of turbidity, however, has been the candle turbidimeter (Stern and Stickle
1978) although this method has limitations over certain colored particles.
Recently, other methods have been used and these are usually separated into
two categories: gravimetric and optical measuring devices. The
nephelometer has been widely adopted as the preferred measurement of
turbidity (APHA 1976)}. The nephelometer measures scattered Tight as
compared to transmissometers which measure Tight extinction. Candle
turbidimeters measure light extinction in Jackson Turbidity Units {JTU),

nephelometers measure scattered 1ight in Nephelometric Turbidity Units

(NTU), whereas transmissometers measure percent transmittance. Although
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results of methods are not perfectly correlated, each of these methods has
support within the scientific community (Stern and Stickle 1978).

Turbidity is an optical properﬁy of water. Although some people use
turbidity and the suspended sediment concentration interchangeably, Duchrow
and Everhart (1971) found a poor correlation between the two for all
materials tested. Their conclusion was that turbidity may be a reliable
parameter as an index of suspended sediment in an individual water system,
only if the sediment source remains constant.

Turbidity and excessive concentrations of suspended materials can
affect aquatic biota several ways. These effects have been placed into
four general categories (EIFAC 1964):

a. Action directly on the organism which either would kill or

reduce growth rate and resistance to disease;

b. Prevention of the successful development of eggs and/or larvae;
c. Modification of natural movements and migrations;
d. Reduction in the abundance of available food.

Food Suppl

Primary Producers

Phytoplankton and aquatic plants are primary producers in aquatic
systems. The source of energy for photosynthesis is soelar radiation. The
quality, intensity and duration of light influence photosynthetic rates in
aquatic plants. Therefore, any factor that limits light penetration in the
water has the potential to affect primary production. Brylinsky and Mann
(1973) reported that variables related to solar energy had a greater

infiuence on production in waters from the tropics to the arctic than
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variables related to nutrient concentration. Turbidity can ostensibly
influence solar energy input into aquatic systems.

In western Lake Erie, vernal pulses in phytoplankton were associated
with variations in turbidity (Chandler and Weeks 1945). Although Verduin
(1951) found phytoplankton biomass increased slowly in clearer and turbid
areas of Lake Erie, diatom densities in turbid areas were less than 20% of
those in clear waters. Turbidity in the lower Missouri River, often in
excess of 300 PPM, resulted in low numbers of phytoplankton (Berner 1951).

Aquatic plants also can be limited by turbidity. Goldman and Wetzel
(1963) reported restricted macrophyte development in Clear Lake,
California. They found that primary production was almost exclusively

Timited to phytoplankton and bacteria because of turbidity.

Primary Consumers

Turbidity and suspended solids concentrations can adversely affect
feeding and production of zooplankton. Sherk et al. {1976} reported that
ingestion rates for furytemora affinis, a copepod, were significantly
reduced at solids concentrations in excess of 250 mg/1; reductions in
feeding were found at concentrations above 50 mg/). The authors concluded
that suspended solids would interfere with zooplankton feeding and
ultimately affect the food chain. Paffenhafer (1972) found that a marine

planktonic copepod’s, Calanus helgolandius, ability te molt from larval to

adult stages was reduced by concentrations of 10 mg/1 "red mud”. Also,
ovarian development was absent in females and growth was adversely
affected. However, Gregg and Bergersen (1980) reported that turbidities as

high as 1558 had no adverse effect on survival of Mysis relicta although

the effects of turbulence significantly affected survival.
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Community Response

In the mid 1940’s, fisheries in the Great Lakes were declining. Some
people attributed that decline to increased agricultural activities in the
watershed and increased turbidities in the lakes, especially in Lake Erie.
Van Qosten {1945) could not attribute any general dec]ine in the fishery to
increased turbidities. His literature review concluded that: 1)
clearwater forms live and thrive in muddy streams when turbidities range to
400 PPM; 2) fishes can move without injury through waters with high
suspended levels; 3) fish production in ponds is not adversely affected by
average turbidities of 100 PPM; and, 4)_turbidity may favor survival of

young fish as they may be protected from predators.

General Ecology

The physical condition of larval shad (Dorosoma sp.) was found to
deteriorate with increased turbidities as a result of floods in 1981 and
1982. Secchi disk readings declined from 120 cm to 8-20 cm resulting in
low zooplankton abundance (< 40/1iter) and signs of cell and tissue atrophy

and deterioration. In contrast, larval Pacific herring, Clupea harengus

pallasi, were found to have higher feeding incidents and activity at
moderate turbidities (500 and 1000 mg/1) (Boehlert and Morgan 1985).
Boehlert and Morgan believed that particulates may enhance the visual
contrast allowing herring larvae to better visualize their prey and/or that
turbidities may cause decreased transparency of food {rotifers) items.

Their findings for larvae are in contrast to those of Gardner (1981) who
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reported that increased turbidity resulted in decreased feeding rates in
Juvenile bluegill, Lepomis macrochirus. Feeding rates were about 50% at
190 NTU’s as compared to those at 0 NTU’'s. Gardner (1981) did find,
however,'that size selectivity ﬁas independent of turbidity level. The
probable reason for reduced feeding rates in bluegill was reduced prey
availability. For example, Vinyard and 0‘Brien (1976) found that increased
turbidity caused substantial reductions in reactive distances to prey items
for all sizes of prey. The net effect of increased turbidity would be a
decrease in food consumption and possible decreased growth and abundance.
Sigler et al. (1984) found that at about 80 NTU’s, densities and growth of
steelhead trout and coho salmon juveniles were reduced as compared to those
in clear water. In general, more fish stayed in test channels with clear
water than those with turbid water and weight and length of steelhead and
coho salmon increased faster. Feeding distances of coho salmon were
reduced by turbidities of 60, 30 and 20 NTU’s and a significant reduction
in the percent of prey captured by dominant individuals (Berg and Northcote
1985). Ingestion rates of coho decreased below 50% at 60 and 30 NTU’s but
at 20 NTU’s feeding was slightly affected. As important as feeding, Berg
and Northcote (1985) found social behavior of coho salmon to be altered.
Pulses of turbidity of 30 and 60 NTU’s altered dominance hierarchies and
territorial behavior and affected the holding poﬁition of some fish. Berg
and Northcote concluded that the fitness of juvenile fish frequently
subjected to sedimentation pulses may be impaired. In contrast, Gradall
and Swenson (1982) reported that turbidities of 7.1-61.1 FTU did not alter

the distribution of brook trout, Salvelinus fontinalis. However, at a mean

turbidity of 7.1 FTU, brook trout used overhead cover less and spent less

time associating with the bottom.
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Suspended sediments at high concentrations can have adverse affects
on incubating embryos and larvae. High concentrations of suspended
sediments had little effect on either white perch or striped bass eggs and
Tarvae (Morgan et al. 1983). Hatching delays for striped bass occurred at
2000 mg/1, while delays for white perch occurred at 5250 mg/1. Exposures
of Tarvae to 1626-5380 mg/1 for 24 hours resulted in 15-19% mortality for
white perch. Striped bass Tarval mortality was higher (20-31%) at
concentration of 1557-5210 mg/1.

Physiolpgical Responses

Neumann et al. (1975) examined the effects of natural sediment
suspensions on respiratory and hematological responses of toadfish.
Toadfish held in 14.6 g/liter suspended solids for 72 hours manifested no
significant difference in microhematocrit, hemoglobin, erythrocyte count

and bloodosmolal concentration as compared to controls.

Horkel and Pearson (1976} found that green sunfish exposed to
turbidities of 2359-3750 FTU’s at 15C more than doubled their ventilation
rates although by the third day ventilation rates returned to pretreatment
ievels. Oxygen consumption rates did not change. Their study showed rapid

acclimation or physiological adjustment with continued exposures to turbid

conditions.
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GENERAL DISCUSSION
W 1it

Qur water quality dafa indicate that little water quality change
occurred as a result of dredging and overflow from land disposal. For
example, water temperature, pH and dissolved oxygen were virtually
unaffected by these activities as close as 90m downstream (Appendix Tables
A-1, A-2, A-3 and Figs. 2 and 3)}. Reductions in dissolved oxygen were less
than 1/2 mg/1 and concentrations were well above 10 mg/1 throughout the
duration of dredging and disposal. Differences in pH were not consistent
among stations but were less than 0.1 pH unit.

Localized water clarity, however, did decrease as a result of disposal
activities but little change resulted from dredging. Turbidity increases
from dredging were not measurable and often our readings 425 m downstream
of the dredge were lower than 100 m upstream. While collecting our
samples, we observed periodic increases in turbidity in shallow waters that
appeared to be caused by prop wash along the substrate. At these times,
however, there was a noticeable turbidity increase at the water surface.
Also, our turbidity data indicates that little difference occurred within
the water column. For example, intensive monitoring of hopper dredging
operations have shown significant increases in turbidity at the bottom
{Raymond 1984) which we did not observe. In contrast to dredging, disposal
did result in localized increases in turbidity especially 90 m downstream
from the effluent of the disposal ponds (Appendix Table A-4, Fig. 4).
Elevated turbidities were measured at times 425 m downstream. In all
cases, however, turbidity levels were within the range that can occur in

the reservoir during runoff (U.S. Geological Survey 1974). On 19 February,
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1986, a slug of turbid water entered the reservoir from the discharge
ponds. Turbidity up to 82 NTU’s was measured at this time; duration was
short lived as our samples taken the following week indicated that levels
had decreased to near ambient (Fig. 4).

The overall influence of dredging and disposal on turbidity in the
reservoir can be seen from our turbidity measurements at the fish
collecting stations (C1-C5, W1-W5) which were as much as 9.7 km downstream
of the operations. These data suggested that turbidity increases were in
the range of 2-4 NTU’s from dredging and disposal (Fig. 5).

In Lower Granite Reservoir, suspended solids manifested similar trends
as that with turbidity (Appendix Table A-5, Fig. 6). Highest levels of
suspended solids also were observed on 19 February (205 mg/1). As with
turbidity, data collected after 19 February, indicated that suspended
salids decreased and were about at ambient Tevels 425 m downstream
throughout the remaining period of disposal. Although 205 mg/1 of
suspended solids appears high relative to upstream Jevels, this
concentration represents about 5% of that determined to be lethal to
rainbow trout fingerlings when maintained at that concentration for 21 days
(Peddicord and McFarland 1978). Also, and more importantly to the Lower
Granite system, concentrations of suspended solids have exceeded 500 mg/1
naturally in the Snake River during runoff (U. S. Geological Survey 1974)
but typically range from 160-200 mg/1 during "normal” runoff events.
Therefore, even though a spike of 200 mg/1 concentration of suspended
solids resulted from the disposal, the ecological effects of these
sediments were probably similar to what occurs in the Lower Granite

Reservoir system during runoff.
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The gradual increase in turbidity as a result of spring runoff is most
obvious from secchi disk data (Fig. 7). After early to mid-February 1985,
general water clarity decreased substantially. Secchi disk readings were
about 1.5 - 2.0 m prior to that time but dropped to about 1/4 m after mid
February which coincided with the increase in flows from spring runoff

which occurred early in Lower Granite in 1986.

Benthi nce

The influence of dredging and disposal on benthic communities was
assessed by intensive sampling at four sites across the reservoir.

Although up to ten samples were attempted per site, we found wide variation
in the density of benthos. Variation resulted from two principal sources:
one was the clumped distribution of organisms and that some of the sampling
was conducted in the old river channel. The old river channel in several
locations had a bedrock bottom which precluded effective sampling by a
dredge. As a result, we were not able to have complete data at several
sites which affected our ability to effectively analyze the data (Figs. 8-
11}.

Overall abundance of benthos was definitely weighted towards
oligochaetes and dipterans. Over 98% of all organisms collected at each of
the ten stations were oligochaetes and dipterans. In general, dipteran
abundance was higher at dredge stations, while oligochaetes were more
abundant at disposal stations {Figs. 8-11). Abundance of dipterans was
highest in April at disposal stations, whereas highest abundance at dredge
stations occurred in September. Our data suggest that dredging activities

resulted in low abundance of dipterans at stations €2, C3 and C4.
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Recolonization occurred in the summer and by September, the area affected
by the dredging had become well established by dipterans.

Density of dipterans in September 1986 exceeded those sampled at the
same Jocation in fall 1985 (Bennett and Shrier 1986). Leathem et al.
(1973) reported rapid recovery of benthos in the Delaware Bay following
dredging and disposal. Little physical change in the bottom occurred.
Others, however, have reported drastic reductions in number of species,
number of individuals and biomass in a dredged channel, with no recovery
within 11 months after dredging (Kaplan et al. 1974). Epifauna and infauna
were reduced within 500 m of the dredge channel. Kaplan et al. (1974)
attributed changes in the benthic community to the changing physical
habitat. Low dipteran abundance at station C5, upstream from the dredging
activities, was a result of our sampling difficulties in the main with a
Ponar dredge and not the result of adverse affects of dredging. Abundance
of oligochaetes at dredging and disposal stations followed similar patterns
in abundance. Abundance was higher in February and September and low in
April and June at dredge stations. Abundance of Oligochaetes followed
similar patterns-as that of dipterans at dredge stations. Changes in
abundance at other stations reflect "natural" changes in benthic abundance.
We found similar changes in abundance of oligochaetes and dipterans in

Lower Granite Reservoir in an earlier study (Bennett and Shrier 1986).

Fish A an
Qur data suggest that dredging and disposal activities had no affect
on changes in abundance of fishes. We cannot compare directly among
sampling times without caution (before, during and after) because of the

"natural” increase in fish activity with the advent of longer days and
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rising temperatures. Because of differences in fishing effort, comparison
of abundance should only be compared by examining catch per unit effort
data for each of the stations (Appendix Tables B-1 - B-9). These data
demonstrate that ¢/f increased in anadromous salmonids from the initiation
of dredging through completion. Catch rates for resident fishes were
variable and also increased for most species before, during and after
dredging. Catch rates for salmonid fishes at stations W4 and W5 and C4 and
C5 were similar which indicates salmonids were neither attracted nor
repelled from the dredging and disposal activities. However, high catch
rates for abundant nongame species {largescale sucker, peamouth, northern
squawfish, bridgelip sucker and redside shiner) at W4 during disposal
suggests possible attraction to the waters at higher turbidity. Catch
rates of largescale suckers and northern squawfish also were higher at C4
than C5. These data suggest that dredging and disposal activities had
Timited.effect on fish abundance or species composition. Fish biomass also
was high at disposal (Fig. 23) and dredge stations (Fig. 22} during
dredging and disposal. About 4% of the fish biomass collected during
disposal activities at W4 were gamefish (Fig. 24); 4% gamefish was low
compared to that from other stations in Lower Granite Reservoir (Fig. 24).

The biomass of fish flesh sampled during dredging at station C4, the
site of dredging activity, was high which suggests that fish abundance was
not impacted by dredging activities (Fig. 22). Fish abundance at C4 was
assessed only by seining. In contrast, low fish abundance at C5 also was
related to sampling (Fig. 22). We could not fish gill nets during dredging
at C4 as a result of the extremely high flows and velocities and high

densities of algae that occurred during the latter part of the dredging

period. Several nets were lost or destroyed by the algae and high flows.
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When comparing relative abundance of various fishes and community
composition at the various stations prior to, during and after dredging, it
is important to note that numbers of fishes collected varied widely with
time and station. Often, less than 25 fish were collected at some of the
stations and comparing the abundance of 25 fish with that of several
hundred, can lead to false conclusions. Our data does show, however, that
major fishes collected during the recommended dredging winter window
(Bennett and Shrier 1986) consisted of nongame cyprinid and catostomid
fishes. Salmonids consisted mostly of chinook salmon especially in the
latter part of February and March. The apparent abundance of juvenile
chinook salmon may be a result of some early upstream hatchery releases and
may not represent the "norm" for winter conditions in Lower Granite
Reservoir. With only one year of data, however, interpretation must be

made cautiously.

Food Habits

Our food habits data does show that food items are present in the
stomachs of juvenile chinook salmon and rainbow trout in the winter (Figs
25 and 26). Too few fish were collected to compare the abundance of food
items among stations although wide variation was present. For example,
during dredging, chinook salmon fed on plecoptera and diptera, whereas
after the completion of dredging, trichoptera and ephemeroptera were more
abundant. Similar variation was found in chinook salmon during and after
disposal operations (Fig. 25). Because low water temperatures during
January and February decrease digestion rates, these food items could have

been in their stomachs for several hours or several days.
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Predation

The magnitude of predation by northern squawfish on salmonid juveniles
was surprisingly high (Fig. 27). Examination of 24 northern squawfish that
contained food revealed that more than 80% of their food items was that of
salmonid fishes. Low water temperatures may reduce digestion rates and
feeding activity but predation continues through the winter based on these
results. The second highest food item from these squawfish stomachs was
that of miscellaneous fishes. Many of these could have been salmonids but
digestion could have precluded more definite identification.

Qur results suggest that dredging and land disposal and the resultant
overflow into Lower Granite Reservoir had minimal adverse affects on water
quality and the fish community. Benthic abundance deciined as much as 1.6
km downstream from the dredging operation but recovery occurred after 6
months. Decreased benthic abundance was probably a result of substrate and
organism removal at the dredge station (C4) and by covering of substrate by

moving sediments further downstream (stations C2 and C3).
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Table 1. Density (Nos./m?) of benthic organisms collected during 1986 at station C1 in Lower Granite
Reservoir, Washington. Sampling was conducted using a PONAR dredge at four sitas per station
(A-D) each equidistantly positioned across the channel. Densities are generally represented by
a mean value based on five samples per site.

Nsmatoda
Anneilda

Cligochasta 1881 2541 2085 826 385 543 1306 1248 25 9 953 1154 1248 738
Polychaata : 8

Narpis succines

Hirudinea

Pharyngobdeilida

Erpobdellidas

Nephejopsis obscura

Glossiphoniidas

Helobdalia sp.

Crustacea

Copepoda
Lepidoptera
Collamboila
Hydracarina
Amphipoda
Corophium sp. 25 2’ 25

Insacta
Coleoptera
Ephemeroptera
Ephemereilidae
Ephemereia sp. 17
Heptageniidae
Rhithrogena sp.
Tricorythidae
Tricorythogas sp.
Trichaptera
Hydropsychidae
Hydropsche sp.
Odonata
Gamphidae
Pelecypoda
Sphaendae
Corbicuiidas
Corbicuia sp. 8

Diptera

Chironomidae 8 8 8
Phoenopsectre sp. 8 8 B
Microsectrs sp.
Dicrotendipes sp. 125 75 844 g70
Tanytarsus sp. 25
Chironomus chironomus 268 3 50 8 ] 234 8 34
Chironomus sp. 8
Cryprochironomus sp. 17 8
Polypedilum sp. 42 ] )
Prociadius sp. 134 8 8 8 125 8 25

Simulidas 8 8




Table 2. Density (Nos./m2) of benthic organisms coilected during 1986 at station C2 in Lower Granite
Reservoir, Washington. Sampling was conducted using a PONAR dredge at four sites per station
{A-D) each equidistantly positioned across the channel. Densities are generaily represented by
a mean value based on five samples per site.

Nematoda 8 17

Annelids

Qligochasta 3553 887 1112 42 a7 1098 #10 17 4 1980 794 1548 a4m
Folychasta

Nerpiz auccines

Hirudinea

Phmryngobdelikia

Erpobdellidas

Nepheiops:s obscure

Gioasiphoniides

Heloboelia ap.

Crustacas

Copepoda
Lamdooters
Collsmboia
Hydracarina
Amphipods
Covophium sp. B

Insecta
Caleoptera
Ephemsropiera
Ephermensilidas
Ephemeceiia sp.
Heptageniidae
Rhithrogena 3p.
Tricarythidee
Ticorythodes sp.
Trichoptara
Hydrepaychidas
Hydropscha sp.
Qdonata
Gomphidas
Pulacypoda
Sohuaridas
Carbicuiidas
Corbticuia ap. -] 84 9

Ciptera

Chirongmidas 8
Phoenopsactra sp. 25 8
Microsecoa ap.
Dicromndipes ap. 50
Taryiarsus sp. 8
Chircromus chironomus 217 150 ] a 8 1195 Wg  2es
Chironomus sp. 125 a
Cryprochiranomus sp. 8
Folypedilum ap. ] 33 8
Prociadius sp. 42 a g 359 17 57 410

Simulidas




Table 3. Density (Nos./m2) of banthic organisms coilected during 1986 at station C3 in Lower Granite
Reservoir, Washington. Sampiing was conducted using a PONAR dredge at four sites per station
(A-D) each equidistantly positioned across the channel. Densities are generally represented by
a mean value based on five samples per site,

February April _ June September
] [+ D A B c o A ] [ D A B [ D

A

Nemuoda
Anneikin

Oligochasia 028 s 1237 21 58 8 83 84 109 8 8 2500 410 568 380
Polychests

Nerpis succinee

Hirudinea

Pharyngobdedlida

Erpobdsllidas

Nephaiops:s obscurs

Glossiphoniidas

Helobowila 2p.

Crusiaces

Copepoda
Lepidogters
Collemboia
Fydracaring
Amphipoda
Coropiium sp.

insacta
Colsocters
£phemesmopen
Ephemersllidas
Ephemareiia sp.
Heptageniidae
Rhithrogena ap. -]
Tricorythidae
Trcorythodes sp.
Trchoter
Hydropsychidas
Hydropsche sp. ]
Qdonata
Gomphidas
Pelecypoda
Sphaandae
Caorbiculidae
Corticuia ap. by | [}

Diptera

Chironomidae 8
Fhosnopsectra sp. 8
Microsectrs sp.
Dicrotendioes sp. 4
Tanymarsus sp. 8 B
Chimnomus chimnomus 142 17 3 1254 42 &7
Chironomus sp. 17
Cryplochironomus sp. a
Potypedilum 5p. 8
Prociadivg sp. 17 ] 17 33

Simulidae




Table 4. Density (Nos./m?) of benthic organisms collected during 1986 at station C4 in Lower Granite
Reservoir, Washington. Sampling was conducted using a PONAR dredge at four sites per station
(A-D) each equidistantly positioned across the channel. Densities are generally represented by
a mean value based on five samples per site.

April hine September
6 % #®& ¢ 0 A B € © A 8 ¢ ©

|

Nemainda ] 8
Annslida

Oligochasta 8 42 k)] 8 B 688 1287 &89
Polychasta
Narpiz succinse
Hirudinaa
Pharyngotiellida
Erpobdwilidae
Nepheiopaiz obacurs
Glomsiphoniidss
Helobcelia sp.

Crustacea

Copepoda
Lepidoptera
Coilembola
Hydracarine
Amphipoda
Comphium $p. 25

nsecta
Colsoptera
Ephemaeroptera
Ephamarallidas
Ephemareia sp. ]
Hegingenidas
Anithrogena sp.
Tricorythides
Trcorythodes s5p.
Trichoptera
Hycropaychidas
Hydropsche ap. 8
Qdonata
Gomphidas
Pelecypodia
Sphasnidas
Corpiculidas
Condicuia sp.

Diplera
Chironomidas 8
Phosropsectra 3p. i}
Microsectra sp,
Dicrotendipes sp.
Tanytarsus sp.
Chironomus chirnomus 8 8 w2 1A 92
Chironomus sp. ’ 17
Cryprochironomus 3p. 8
Polypadilum sp.
Proctadius 3p. 134 a3
Simulidae




Table 5. Density {Nos./m2) of benthic organisms collected during 1986 at station C5 in Lower Granite
Resarvoir, Washington. Sampling was conductad using a PONAR dredge at four sites per station
(A-D) each equidistantly positioned across the channel. Dsnsities are generelly represented by
a mean vaiue based on five samples per site.

_February _April June September
B c D A [] c A [] [ D A ] c D

o

A

Nemuinda

Annslida

Qligoctineta S5 493 B8 970 152 178 182 42
Polychasta

Nerpia succines

Hirudines

Pharyngobdsiiida

Erpobdellidas

Nephwelopais obacure

Glossiphoniidee

Hajoboelis sp.

Crustacea

Copepoda
Lepidoptera
Collembala
Hydracarina
Amphipada
Carophium sp. a a

Insecta
Colsoptsra
Ephemeroptera
Ephemareilidae
Ephamereiia ap.
Heptageniidas
Rhithrogana sp.
Tricorythidae
Tricorythodes sp.
Tricheptera
Hydropsychidas
Hyampschs sp. 12
Qdonata
Gomphidae
Pslacypoda
Sphasridas
Corticulidas
Corbicula 3P,

Diptern

Chirenomides §
Phosnopsectra 3o, 42 17
Microsectrs ap. -
Dicrorendipes =p. 10
Tarytarzuy sp. a
Chironomus chimromus 33 58 LhlH 176
Chironomus sp. 17
Cryprochifonomus &p. 25
Polypecilum sp. 17
Procisdius sp. 25 3

Simulidae




Table 6. Density (Nos./m?) of benthic organisms collected during 1986 at station W1 in Lower Granite
Reservoir, Washington. Sampling was conducted using @8 PONAR dredge at four sites per station
(A-D) each equidistantly positioned across the channel. Densities are generaily represented by
a mean value based on five samples per site.

February April June September
[ B c D A B c ] A ] c D A B Cc D

Nememda 25
Annatida

Oligochasta 2458 8410 10725 §303 sy g 2232 1438 853 805 a0 2023
Potychasta

Nerpie auccinsa 8 8

Hirudinea

Pharyngotaellida

Erpobdailidas

Nephelopais obstur &7

Glossiphoniidas

Hedobdells sp. 25

Crustaces

Copepoda
Lapidopters 8
Colembota
Hydracanna B
Amphipoda ]
Corophium 3p. ] g -] | 178 8

Inyacta
Colsoptara 8
Ephamaeroptera
Ephemersliidas
Ephemareia 3g.
Heptageniidas
Rhithrogerna ap.
Tricorythidas
TReorythodes 5.
Trichopuara
Hydropsychidea
Hydropache 3p.
Odonnta
Gomphidae
Palecypoda 25 25
Sphasridas 17
Corbiculidas
Corbicuia ap. 117 a3

Diptern
Chirpnomidae 25 8 -}
Phosnopsectra sp. 42 B ] 33
Microsectrs ap. 985 852
Dicrotendipss sp.
Teryimrsus sp. a3 -]
Chironomus chironomus 17 100 242 376 58 92 17
Chironomus 3p.
Cryptochironomis sp. B 8 25
FPolypadiium sp. B ] a a
Prociadius ap. 33 208 58 52 -} 25
Simuligas




Tabie 7. Density (Nos./m2) of benthic organisms collected during 1986 at station W2 in Lower Granite
Reservoir, Washington. Sampling was conducted using a PONAR dredge at four sites per station
(A-D) each equidistantly positioned across the channel. Densities are generally represented by
a mean value based on five sampies per site.

February April _Juns _ Seplamber
A B [+ D A B [ ] A B c [+] A -] [ [+]

Nematda 17

Annelida

Oligochaeta 152 4957 752 M6 38 T 100 853 IME 3570 1483 1520
Poiychasta

MNerpis succines 8

Hirudinea

Pharyngobdallida

Erpobdellidas

Nephelopsis obscura

Glossiphoniidas

Heilohaoeiia sp.

Crustaces

Copepoda
Lepidoptera
Collemboia
Hydracanna
Amphipoda
Corophium 3p. 176

Insacta
Calsopters
Ephamerortera
Ephemarellidas
Ephemerelia 3p.
Heptageniicas
Rnithropena sp.
Tricorythicas
Tricorythodes sp.
Trichoptera
Hydropsychidas
Hydropsche sp.
Odoneia
Gomohidas
Petecypoda -} 1
Sphastidas
Corbiculidas
Corbicuia ap.

Diptera
Chironamidas 8
Phoencpsectra sp.
Microsectra sp.
Dicrotendipss sp. 1379 g2 42 8 17
Tamymaraus sp.
Chironomus chironomus g 58 ] B 80 42 309
Chironomus sp.
Cryptochironomus sp. 25 [:] 1 17
Polpediium sp. 8
Prociadius sp. 42 178 L 58
Simulidas




Table 8. Density (Nos./m2) of benthic organisms collected during 1986 at station W3 in Lower Granite
Reservoir, Washington. Sampling was conducted using a PONAR dredge at four sites per station
{A-D) each equidistantly positioned across the channel. Densities are generally represented by

a mean value based on five sampies per site,

February

September

A 8 C D

A

[+ A B [4]

Nematoda

Annelida

Diigochasia
Polychasta

Nerpis succines
Hirudines
Pharyngobaellida
Ermobdsllicas

Nepiwiopsis obscurs
Glossiphoniidas

Helobdeiia sp.

Crustacea

Copepoda
Lepicoptera
Collambola
Hydracarna
Amphipoda
Corophium sp.

nsacta
Coleopters
Ephememptara
Ephamerellides
Ephemereda sp.
Haptageniidas
Anithrogens sp.
Tricorythidee
Tricorythoglas sp.
Placoplara
Trichopiera
Hydropaychigas
Hydropsche 3p.
Odonata
Gomphidae
Pelecypoda
Sphasridas
Corbiculidas
Corticiia sp.

Diptars

Chironamidas
Phosnopesctra ap.
Microascira ap.
Dicrotendipes ap.
Tanytarsus sp.
Chronomus chironomus
Chironomus sp.
Cryptochimonomus sp.
Polypadiium sp.
Prociacius sp.

Simulidaa

1978 7233

837 4148

12 17

25

a3 50 k)

42

© 1154

7

228

07

187 25 50 268 1922 g 200

42

42




Table 9. Density (Nos./m?) of benthic organisms collected during 1986 at station W4 in Lower Granite
Reservoir, Washington. Sampling was conducted using a PONAR dredge at four sites per station
(A-D) each equidistantly positioned across the channel. Densitias are generally represented by
a mean value based on five samples per sita.

Febtiruary _Aprl June S_;phm
c

A [} c D A A [

[
O
=
»
o
L+
o

Nematoda 17 . ]
Annaelida

Dligochmete 1881 7440 5802 11782 1714 B22 1045 209 2433 217 126 203 1958 32O 510 1756
Poiychasta

Nerpis succines . 10

Hirudines B

Pharyngabdsiiga

Empobdeilidas

Nephelopsis obscure

Glossiphoniidas

Helobosila sp.

Crustaces

Copapoda
Lepiiopers
Caollembola
Hydracarina
Amphipoda
Corophium ap. 284

Insecta
Colsaplera
Ephameroptera
Epheamerailidae
Ephamensiis ap.
Haptageniidas
Rhithmgens ap.
Tricorythidas
Tricorythocies sg.
Trichoptera
Hydropsychidee
Hydropache sp. ]
Odonata
Gomphidae 17
Pelscypoda 17 25
Sphasricas 67
Corbiculidas
Corbicuia ap. 8 10 109

Diptera

Chironomidas 8 ' 8 !
Phosnapsectra sp. 8 25
Microsectrs sp.
Dicrotendipes ap. 1Mz 1324 17 &3 B
Tarytarsus sp.
Chironomus ohironomus 17 17 42 75 50 8 17 8 25 17
Chironomus sp.
Cryptochironomus sp. 17 1 a 8 i 42 a5
Folypsdilum ap. 284 33
Prociadius sp. 8 L 25 58 33 33 25 17 &7

Simulidas




Table 10. Density (Nos./m2} of benthic organisms collected during 1986 at station WS in Lower Granite
Reservoir, Washington. Sampling was conducted using a PONAR dredge at four sites per station
{A-D) each equidistantly positioned across the channel. Densities are generally represented by
a mean value based on five sampies per site.

February Anrll _ June September
A [] c +] A ) [+ [] [+] [+] A -] c ]

a
»

Nemawada
Annsliga

Oligochasts 284 2675 7 0B7 426 4B 138 43z 364 401 476 1923 & 2ikd 7aC
Polychasta

Nempt succine 10 B 17

Hirudinaa

Pharyngobdelida

Erpobdsilidse

Nephelopsis obscure

Gloasiphonidae

Helobosdis 1p.

Crustacea

Copepoda
Lepidoptera
Collemnbola
Hydracanna
Amphipoda
Comphium ap. 17

Insacta
Coleapters
Ephsmeroptera
Ephsmereilidaa
Ephemenia sp.
Heptageniidas
Rhthrogena sp.
Tricorythidae
Tncorythodes Bp.
Trichopters
Hydropsychidas
Hygropsche ap.
Odonata
Gomphidas
Peiscypoda B
Sphaeridas N
Corbiculidas
Corbicuie ap. 10 8

Diptera

Chironomidae 25 B
Phosnopsects 10, 21 A 21
Microgects sp.
Dicrotendipes sp. 476 10
Taryiarsus sp.
Chironomus chironomus 33 10 58 42
Chironomus sp.
Cryprochirenomus ap. 17 10 -}
Folypedilum sp.
Procisoius sp. 52 3l a3 52 42

Simuticas




Table 11. Relative abundance of fishes sampled from stations potentially
affected by hopper dredging activities in Lower Granite Reservoir,
Idaho-Washington in 1986. Station C5 was located upstream from the
dredging, C4 was at the dredging site and C1 (8.0 km) and C2 (1.6 km)
were downstream.

Species €l €2 3 o
Pacific lamprey 1 { 0.20)

white sturgeon 2 ( 0.40)

sockeye salmon 1 ( 0.20) 3 {1.37) 5( 1.96) 1 { 0.57)
chinook salmon 182 (36.11) 54 (24.66) 96 (37.65) 49 (27.84)
mountain whitefish 8 { 1.59) 6 ( 2.35) 5 ( 2.84)
rainbow trout 40 { 7.94) 4 ( 1.83) 3 (1.18) 2 ( 1.14)
chiselmouth 25 ( 4.96) 69 (31.51) 40 (15.69) 49 (27.84)
carp 8 ( 1.59) 9 { 4.11) 4 ( 1.57) 6 { 3.4])
peamouth 45 ( 8.93) 3 (1.37) 1 ( 0.39)

northern squawfish 32 ( 6.35) 4 (1.83) 24 ( 9.41) 11 { 6.25)
redside shiner 74 (14.68) 57 (26.03) 2 ( 0.78) 22 (12.50)
bridgelip sucker 16 ( 3.08) 6 ( 2.74) 1 { 0.39) 8 { 4.55)
largescale sucker 62 (12.30) 10 ( 4.57) 68 (26.67) 22 (12.50)
brown bullhead 2 ( 0.40)

channel catfish 1 ( 0.39)

tadpole madtom 2 { 0.40)

pumpkinseed 1 { 0.20)

smatlimouth bass 1 ( 0.20) 2 ( 0.78) 1 ( 0.57)
yellow perch 2 ( 0.40)

sculpin 2 (0.78)

Totals 504 219 255 176




Table 12. Relative abundance of fishes sampled from stations potentially
affected by discharge from settling ponds in Lower Granite Reservoir,
Idaho-Washington in 1986. Station W5 was located above the effluent,
W4 was located at the effluent and W1 (9.7 km) and W2 (1.6 km) were
downstream.

Species W] W2 W3 W4
white sturgeon 2 (1.74)

sockeye salmon 3 {0.61)

chinook salmon 29 (25.22) 6 (16.67) 31 { 4.23) 92 (33.95)
mountain whitefish I { 0.87) 1 ( 0.14) 20 ( 7.38)
rainbow trout 4 ( 3.48) 3 ( 8.33) 8 ( 1.09) 12 { 4.43)
chiselmouth 27 (23.48) 4 (11.11) 12 { 1.64) B8 ( 2.95)
carp 13 ( 1.78) 12 { 4.43)
peamouth 1{0.87) 269 (36.75) 6 ( 2.21)
northern squawfish 18 (15.65) 8 (22.22) 93 (12.70) 50 (18.45)
redside shiner 4 ( 3.48) 11 (30.56} 49 ( 6.69) 23 { 8.49)
bridgelip sucker 8 ( 6.96) 3 ( 8.33) 55 ( 7.51) 6 { 2.21})
largescale sucker 18 {15.65) 1 (2.78) 194 (26.50) 41 (15.13)
brown bullhead 1 { 0.14)

channel catfish 1 ( 0.14) I (0.37)
tadpole madtom

pumpkinseed

smalimouth bass 5 ( 0.68)

yellow perch

sculpin

Totals 115 36 732 271




. Appendix Table A-1. Secchi Disk {(m) and water temperature {C) readings as a result
of dredging (C100 - 100m upstream of dredge; C90 - 90m
downstream of dredge, C425-425m downstream of dredge) and
disposal (W100-100m upstream of discharge; W30-90m downstream
of discharge, and W425-425m downstream of discharge) activities
in Lower Granite Reservoir, Idaho.

SECCHI DISK

Calendar Date Dredge Stations isposal Stations
€100 €90 €425 W100 W90 Wa25
Jan 16
23 1.9 1.9 1.6 1 0.35 1
30 0.45 0.85 1.2 0.7 1.2
Feb 6 1.3 0.6 0.9 0.8 0.3 0.55
13 2 1.3 0.3
19 0.5 0.5 0.15 0.15
26 0.2 0.2 0.1 0.15
Mar 12 0.2 0.4 0.1 0.3

WATER TEMPERATURE
Calendar Date Dredge Stations Disposal Stations
C100 €90 C425 W100 Wao W425
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Appendix Table A-2. Dissolved Oxygen (mg/1) readings as a result of dredging (C100 - 100m
upstream of dredge; CS0 - 90m downstream of dredge, C425-425m
downstream of dredge) and disposal (W100-100m upstream of discharge;
W30-90m downstream of discharge, and W425-425m downstream of
discharge) activities in Lower Granite Reservoir, Washington.

DISSOLVED OXYGEN AT THE SURFACE

Calendar Date - Dredge Stations Disposal Stations
' €100 €90 €425 W100 W30 w425
Jan 16 11.6 11.6 11.5
23 13.6 13.6 13.5 13.9 13.8 13.8
30 12.2 12.2 12.4 12.6 12.4 12.3
Feb 6 11.8 11.3 10.8 12.4 11.4 11.2
13 12 12.2 12 12.2
19 12.6 12.4 11.8 12
26 12.3 12.2 12.2 12.2
Mar 12 11.4 11.4 11.4 12 12 12

DISSOLVED OXYGEN AT MID-LEVEL

Calendar Date Dredge Stations isposal Stations
€100 €90 €425 W100 W20 W425
Jan 16 11.3 11.2 11.5
23 13.3 13.3 13.2 13,5 13.4 13.4
30 12.1 12.2 12.2 12.5 12.3 12.3
Feb 6 11.8 11.9 11.8 11.5 11.4 11
13 11.8 11.8 11.8 12
19 12.4
26 12.2
Mar 12 11.4 11.4 11.4 11.9

DISSOLVED OXYGEN AY BOTTOM

Calendar Date Dredge Statigns Disposal Stations
€100 C90 €425 w100 W90 w425
Jan 16 11 11.2 11.2
23 13.4 13.3 13.3 13.5 13.4 13.4
30 12.2 12.2 12.2 12.6 12.3 12.3
Feb 6 11.7 12 11.2 11.4 11 10.6
13 ' 11.6 11.8 11.8 11.7
19 12.4 12.2 il 11.7
26 12.1 12.2 12.1
Mar 12 11.4 11.4 11.4 11.8 11.8




. Appendix Table A-3. pH readings as a result of dredging (C100 - 100m upstream of dredge;
C90 - 90m downstream of dredge, C425-425m downstream of dredge) and
disposal (W100-100m upstream of discharge; W90-90m downstream of
discharge, and W425-425m downstream of discharge) activities in Lower
Granite Reservoir, Idaho.

pH AT THE SURFACE

Calendar Date Dredge Stations Disposal Stations
Cl00 Cc90 C425 w100 W90 waz2s
Jan 16
23
30
Feb 6 8.25 8.21 B8.22 a8.18 8.14 8.18
13 8.33 8.32 8.32 8.28
19 8.23 B.14 7.98 8.13
26 8.15 7.9 7.94 7.9
Mar 12 8.1 8.1 8.08 7.68 7.66 7.6
pH AT THE MID-LEVEL
Calendar Date Dredge Stations Disposal Stations
C100 €90 C425 W100 Wao Wazs
Jan 16
23
30
Feb & B.26 8.28 8.24 8.29 8.1 8.17
13 8.31 8.3 8.27
19 8.25
26 g§.18
Mar 12 8.12 8.11 8.09 7.63
pH AT THE BOTTOM
Calendar Date Dredge Stations Disposal Stations
cl100 Cs0 €425 wioo W90 W425
Jan 16
23
30
Feb 6 8.2 8.2 8.21 8.2¢% 8.13 8.16
13 8.34 8.32 8.3 8.28
19 8.23 B.15 7.99 8.08
26 8.17 7.88 7.94
Mar 12 8.12 8.1 8.09 7.69 7.67




Appendix Table A-4. Turbidity (NTU) readings as a result of dredging (C100 - 100m
upstream of dredge; C90 - 90m downstream of dredge, C425-425m
downstream of dredge) and disposal (W100-100m upstream of discharge;
W90-90m downstream of discharge, and W425-425m downstream of
discharge) activities in Lower Granite Reservoir, Washington.

TURBIDITY AT SURFACE

Calendar Date Dredge Stations

— Disposal Stations

€100 €90 C425 W100 W30 w425

Jan 16 1.5 1.5 1.5

23 3.05 3.5 3.8 8.6 13 7.3

30 25.1 6.1 6.1 4.9 7.5 4.8
Feb 6 5.65 5.75 5.4 6.2 17.5 11

13 3.1 4.5 3.45 14.9

19 13 19.5 75 31

26 25 28 39.5 28
Mar 12 19 20 21 16 18 18.5

TUBIDITY AT MID-LEVEL

Calendar Date Dredge Stations Disposal Stations

€100 €a0 €425 W100 W30 W425

Jan 16 1.9 2.4 2.4

23 3.82 3.37 3.5 8.75 14.95 8.1

30 4.45 4.85 8.42 5.25 10.05 6.5
Feb 6 5.4 7.1 5.8 9.4 18.5 11

13 4 17.5 15

19 14

26 26.5
Mar 12 21 20.5 24.5 23

TURBIDITY AT BOTTOM

Caliendar Date Dredge Stations Disposal Stations

C100 €90 €425 W100 W30 Wa25

Jan 16 2 2.25 1.9

23 4.75 4.75 4.95 9.45 18 g

30 3.75 5.1 8.7 6.5 11 5.7
Feb 6 5 12 5.7 9.6 18 11

I3 10 9.7 8.3 14.5

18 14.5 20 82 41

26 27 31 28
Mar 12 21 22.5 24 16 19




-, Appendix Table A-5. Suspended solids (mg/1) as a result of dredging (C100 - 100m upstream
: of dredge; C90 - 90m downstream of dredge, C425-425m downstream of
dredge) and disposal (W100-100m upstream of discharge; W90-90m
downstream of discharge, and W425-425m downstream of discharge)
activities in Lower Granite Reservoir, Washington.

SUSPENDED SOLIDS - SURFACE

Calendar Date Dredge Stations Disposal Stations
€100 o] €425 Wi00 Wo0 W425
Jan 16
23 3.87 3.67 5.87 7.6 28.57 4.47
30 25.71 8.48 8.6l 5.73 10.5 5.06
Feb 6 7.99 16.4 17.53 10.59 20 13.9
13 3.73 18.55 4.6 47.2 53
19 19.67 29 179.39
26 53.23 40 66.9 39.33
Mar 12 20.69 25.32 35.62 24.54 58.61 33.81

SUSPENDED SOLIDS - MID-LEVEL

Calendar Date Dredge Stations Disposal Statjons
cl00 €90 C425 w100 W90 Wa25
Jan 16
23 7.47 5.4 5.23 8.8 23.95 8.08
30 10.03 10.7 14.25 8.27 14.6 7.97
Feb 6 8.93 16.1 7.28 10.24 22.9 13.1
13 8.05 31.21 52.87
19 32.95
26 50.26
Mar 12 26.93 29.03 37.96 43.45

SUSPENDED SOLIDS - BOTTOM

Calendar Date Dredge Stations Disposal Stations
€100 €90 €425 w100 W90 W425
Jan 16
23 9.73 13 7.2 7.67 29.8 20.8
30 8.8 1.34 9.64 12.66 17.76 8.6
Feb 6 8.73 58.5 15.67 11.8 22.9 15.1
13 15.18 52.8 32.6 33.2
19 16.74 30.35 205.26 . 91.57
26 50.54 50.98 51.32
Mar 12 29.86 23.29 28.36 36.92 29,67
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Figure 4.
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Turbidity (NTU) at dredge and disposal sites in Lower Granite
Reservoir, Washington, January-March, 1986.

Samples were

collected 100 m upstream, 90 m downstream and 425 m

downstream of dredae and effluent from dicnneal nnandc
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Turbidity (NTU) at dredge (C1-C5) and disposal (W1-W5) sites
in Lower Granite Reservoir, Washington. Samples were
collected upstream from dredging {C5) and overflow from land
disposal ponds (W5), 1.6 km (C2 and W2) and 8-9.7 km
downstream (C1 and W1) from the impact area.
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Suspended solids (mg/1) at dredge and disposal sites in Lower
Granite Reservoir, Washington, January-March, 1986. Samples
were collected 100 m upstream, 90 m downstream and 425 m
downstream of dredge and effluent from disposal ponds.
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Figure 7. Secchi disk readings {(m) at dredge and disposal sites in
Lower Granite Reservoir, Washington, January-March, 1986.
Samples were collected 100 m upstream, 90 m downstream and
425 m downstream of dredge and effluent from disposal ponds.
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